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Abstract The present article is part III of a series devoted to extending the Repeat
Space Theory (RST) to apply to carbon nanotubes and related molecular networks. In
this part III, four problems concerning the above-mentioned extension of the RST have
been formulated. Affirmative solutions of these problems imply (i) asymptotic analysis
of carbon nanotubes (CNTs) via the new techniques of normed repeat space, Banach

The present series of articles is closely associated with the series of articles entitled ‘Proof of the Fukui
conjecture via resolution of singularities and related methods’ published in the JOMC.

S. Arimoto (B) · E. Yoshida · M. Yokotani
Division of General Education and Research, Tsuyama National College of Technology, 624-1 Numa,
Tsuyama, Okayama 708-8509, Japan
e-mail: arimoto@tsuyama-ct.ac.jp

E. Yoshida
e-mail: yoshida@tsuyama-ct.ac.jp

M. Yokotani
e-mail: yokotani@tsuyama-ct.ac.jp

M. Spivakovsky
Institut de Mathematiques de Toulouse, Unité Mixte de Recherche CNRS (UMR 5219), UFR MIG,
Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
e-mail: mark.spivakovsky@math.univ-toulouse.fr

M. Amini
Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University,
Tehran 14115-134, Iran
e-mail: mamini@modares.ac.ir

T. Yamabe
Institute for Innovative Science and Technology, Graduate School of Engineering, Nagasaki Institute
of Applied Science, 3-1 Shuku-machi, Nagasaki 851-0121, Japan
e-mail: YAMABE_Tokio@NiAS.ac.jp

123



J Math Chem (2012) 50:2606–2622 2607

algebra, and C*-algebra becomes possible; (ii) a new linkage is formed between the
investigations of CNTs and those of ‘spectral symmetry’. In the present paper, we
give affirmative solutions to all of the four problems, together with (a) estimates of the
norms of matrix sequences representing CNTs, (b) Challenging Problem A#, which
complements Problems A, (c) several pictures of ‘CNT Matrix Art’ which has heuris-
tic power to lead one to get the affirmative answers to the problems formulated in an
abstract algebraic manner.

Keywords Repeat space theory (RST) · Carbon nanotubes · *-algebra ·
Banach algebra · C*-algebra · Matrix Art

Mathematics Subject Classification 92E10 · 15A18 · 46E15 · 13G05 · 14H20

1 Introduction

The repeat space theory (RST) (cf. [1–24]) is the central unifying theory in the Fukui
Project, which was initiated by Kenichi Fukui (1918–1998, Nobel Prize 1981) and
has been devoted to cultivating a new interdisciplinary region in science. The reader
is referred to [1,2] for the background of the First Generation Fukui Project, and to
[2–6] for the development of the Second Generation Fukui Project.

With the novel methodology of the RST, one can analyze a sequence of molecular
networks, such as a sequence of single-walled carbon nanotubes (CNTs) (cf. [25–28]
and references therein), by associating with it a single element of an infinite dimen-
sional vector space: the generalized repeat space Xr (q, d), or normed repeat space
Xr (q, d, p) as is shown in the present paper.

These spaces Xr (q, d) and Xr (q, d, p) had been initially defined by the first author
(S.A.) respectively in ref. [1] and in ref. [3] in an axiomatic and general language of
*-algebras, Banach algebra, and C*-algebras, so that the RST can be applied to a vari-
ety of molecular problems in a unifying manner. The space Xr (q, d, p) is a Banach
algebra for all 1 ≤ p ≤ ∞, and Xr (q, d, p) forms a C*-algebra for p = 2. Here,
polymer moiety size number q and dimension number d are arbitrarily given positive
integers. We remark that the generalized repeat space Xr (q, d) is contained in the
normed repeat space Xr (q, d, p), which in turn is contained in one of its super spaces
XB(q, d, p) so that aperiodic polymers can be also represented and investigated in
the setting of this super space XB(q, d, p). (Cf. [3].)

In this part III, four problems concerning the above-mentioned extension of the
RST have been formulated. Affirmative solutions of these problems imply that
(i) asymptotic analysis of carbon nanotubes (CNTs) via the new techniques of normed
repeat space, Banach algebra, and C*-algebra becomes possible; (ii) a new linkage is
formed between the investigations of CNTs and those of ‘spectral symmetry’. In the
present paper, we give affirmative solutions to all of the four problems, together with
several pictures of ‘CNT Matrix Art’ which has heuristic power to lead one to get the
affirmative answers to the problems formulated in an abstract algebraic manner.

In Sect. 2, after some preparations, we formulate the four problems (Problems A),
and solve them in Sect. 3. In Sect. 4, we provide estimates of the norms of matrix
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sequences representing CNTs and also Challenging Problem A#, which complements
Problems A. Section 5 provides pictures from the Matrix Art Program of what is called
the Niagra Project, which is a special part of the ongoing international, interdisciplin-
ary, and inter-generational Second Generation Fukui Project.

2 Formulation of Problems A

Before formulating Problems A, we need some preparation.
Throughout, let Z

+,Z+
0 ,Z,R, and C, denote respectively the set of all positive

integers, nonnegative integers, integers, real numbers, and complex numbers. The
reader is asked to briefly read Sect. 2 of the fist part of this series [17] and to recall the
following notation.

Matrices L(N, n, t, x, y, z) and L̃(θ ,n, t, x, y, z) Let r ∈ Z
+, let

x, y, z ∈ Mr (C)with x∗ = x . (2.1)

Let N , n ∈ Z
+, and let t ∈ Z. Define the rnN × rnN Hermitian matrix L(N , n,

t, x, y, z) by

L (N , n, t, x, y, z) = P−t
N ⊗ C∗

n + P−1
N ⊗ B∗

n + P0
N ⊗ (

An − C∗
n − Cn

)

+P+1
N ⊗ Bn + P+t

N ⊗ Cn, (2.2)

where

An = P−1
n ⊗ y∗ + P0

n ⊗ x + P+1
n ⊗ y, (2.3)

Bn = P0
n ⊗ z, (2.4)

Cn = (Pn Sn)⊗ y. (2.5)

Let θ ∈ R, define the rn × rn Hermitian matrix L̃(θ, n, t, x, y, z) by

L̃(θ, n, t, x, y, z) = (eiθ )−t C∗
n + (eiθ )−1 B∗

n + (eiθ )0
(

An − C∗
n − Cn

)

+(eiθ )+1 Bn + (eiθ )+t Cn . (2.6)

Matrices Mn,t,c,d
N and Fn,t,c,d(θ) defined below (by using the above matrices

L(N , n, t, x, y, z) and L̃(θ, n, t, x, y, z)) play a significant role in the present article.

Matrices Mn,t,c,d
N and Fn,t,c,d(θ) Let N , n ∈ Z

+, and let t ∈ Z. Let c, d ∈ C, and
let

X :=
(

0 1
1 0

)
, Y (c) :=

(
0 0
c 0

)
, Z(d) :=

(
0 0
d 0

)
. (2.7)

123



J Math Chem (2012) 50:2606–2622 2609

Define the 2nN × 2nN Hermitian matrix Mn,t,c,d
N by

Mn,t,c,d
N := L (N , n, t, X,Y (c), Z(d)). (2.8)

Let Fn,t,c,d : R → Mq(C) denote the 2n × 2n Hermitian-matrix-valued function
defined by

Fn,t,c,d(θ) = L̃(θ, n, t, X,Y (c), Z(d)). (2.9)

The reader is referred to part I [17] to recall the following Problems (I)–(IV) given
in Sect. 6 of part I [17]. Let a ∈ Z

+, let b ∈ Z, let c, d ∈ C, and let θ ∈ R.

Problems

(I) Is the sequence {Ma,−b,c,d
N }N∈Z+ an element of a generalized repeat space?

(II) Is the sequence {Fn,−b,c,d(θ)}n∈Z+ an element of a generalized repeat space?
(III) Given an N ∈ Z

+, are all the eigenvalues of the matrix Ma,−b,c,d
N explicitly

obtainable?
(IV) Given a θ ∈ R, are all the eigenvalues of the matrix Fa,−b,c,d(θ) explicitly

obtainable?

Our new problems are:

Problems A

(A.1) Is the sequence {Ma,−b,c,d
N }N∈Z+ an element of a normed repeat space

Xr (q, d, p)?
(A.II) Is the sequence {Fn,−b,c,d(θ)}n∈Z+ an element of a normed repeat space

Xr (q, d, p)?
(A.III) Given an N ∈ Z

+, are all the eigenvalues of the matrix Ma,−b,c,d
N explicitly

obtainable through the technique of spectral symmetry given in part I of
the seven paper series of structural analysis of chemical network systems
published in the Int. J. Quantum Chem. [24]?

(A.IV) Given a θ ∈ R, are all the eigenvalues of the matrix Fa,−b,c,d(θ) explicitly
obtainable through the technique of spectral symmetry given in part I of
the seven paper series of structural analysis of chemical network systems
published in the Int. J. Quantum Chem. [24]?

We will provide affirmative solutions for the above problems (A.I)–(A.IV) in Sect. 3.

3 Solutions of Problems A

The affirmative solutions of Problems (A.I) and (A.II) can be obtained by recalling
Definition 1 of the normed repeat space given in [3]:

Definition 1 For each q, d ∈ Z
+ and 1 ≤ p ≤ ∞, let

Xr (q, d, p) := closure ofXr (q, d) ⊂ XB (q, d, p). (3.1)

The set Xr (q, d, p) is called the normed repeat space of type (q, d, p).
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and by recalling Theorem 7.1 in part I of this series [17] which asserts that

(I) The sequence {Ma,−b,c,d
N }N∈Z+ is an element of Xr (2a, 1): the generalized

repeat space with size (2a, 1).
(II) The sequence {Fn,−b,c,d(θ)}n∈Z+ is an element of Xr (2, 1): the generalized

repeat space with size (2, 1).

Note that an affirmative solution of Problem (A.III) automatically follows from an affir-
mative solution of Problem (A.IV), since all the eigenvalues of the matrix Ma,−b,c,d

N
are explicitly obtained by using Theorem 7.2 in part I of this series [17] and by using
the eigenvalues of the matrix Fa,−b,c,d(θ).

Now it remains to give an affirmative solution to Problem (A.IV). To do this, let us
at first recall a fundamental tool of spectral symmetry:

Theorem A (Theorem 2 of part I of the Structural Analysis Series from IJQC [24]) .
Let E be a finite dimensional linear space over the field C, let T : E → E be a
linear operator, let λ1, λ2, . . ., λr be all the distinct eigenvalues of T, let m(λi ) be the
algebraic multiplicity of λi , and let Gλi be the generalized eigenspace associated with
λi , i ∈ {1, 2, . . ., r}. Let ψ be a polynomial with real coefficients, and let τ : E → E
be a nonsingular (i.e., bijective) linear operator.

Suppose that

τ−1T τ = ψ (T ). (3.2)

Then, the following statements are true:

(i) {λ1, λ2, . . ., λr } = {ψ(λ1), ψ(λ2), . . ., ψ(λr )},
(ii) (m(λ1),m(λ2), . . .,m(λr )) = (m(ψ(λ1)),m(ψ(λ2)), . . .,m(ψ(λr ))),

(iii) (τ (Gλ1), τ (Gλ2), . . ., τ (Gλr )) = (Gψ(λ1),Gψ(λ2), . . .,Gψ(λr )).

To give an affirmative solution of Problem (A.IV), we have only to prove Theorem
7.4 in part I of this series [17] reproduced as Theorem B below by using the above
Theorem A. Before reproducing Theorem 7.4, let us recall Definition 7.1 in part I of
this series [17]: For each n ∈ Z

+, let Sgn : {1, . . ., 2n} → {−1, 1} denote the function
defined by

Sgn( j) =
{

1 if j ∈ {1, . . . , n} ,
−1 if j ∈ {n + 1, . . . , 2n} . (3.3)

Theorem B Let n ∈ Z
+, let t ∈ Z, let c, d ∈ C, and let θ ∈ R. Let

ρ := ρ(d, θ) = 1 + d∗exp(−iθ). (3.4)
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Then, for 1 ≤ j ≤ 2n, the eigenvalue λn,t,c,d
j (θ) of the 2n × 2n Hermitian matrix

Fn,t,c,d(θ) is given by

λ
n,t,c,d
j (θ) = Sgn( j)

√

|c|2 + |ρ|2 + 2Re

(
cρ exp

(
i

(
tθ + 2π j

n

)))
(3.5)

= Sgn( j)

√

|c|2 + |ρ|2 + 2 |c| |ρ| cos

(
Arg(c)+ Arg(ρ)+ θ t + 2π j

n

)
.

Proof Let

ε := ε(t, θ) = exp(i tθ). (3.6)

Let n ∈ Z
+, let P̂n denote the n × n unitary matrix defined by P̂n = ε if n = 1, and

P̂n =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

0 1
0 1 0

0
. . .

. . .
. . .

0 1
0 0 1

ε 0

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

, (3.7)

if n ≥ 2. Then, the characteristic equation of P̂n is given by

ln − ε = 0, (3.8)

so that the eigenvalues l j of P̂n are given by

l j = exp

(
i

(
tθ + 2π j

n

))
, (3.9)

j ∈ {1, . . ., n}. Let

D̂n := diag(l1, . . . , ln), (3.10)

and let Ûn denote a unitary matrix such that

Û−1
n P̂nÛn = D̂n . (3.11)
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We mimic the argument in the proof of theorem 7.2(i) from part I [17], and express
the 2n × 2n Hermitian matrix Fn,t,c,d(θ) in terms of c, ρ, and P̂n as follows:

Fn,t,c,d(θ) =
1∑

k=−1

P̂k
n ⊗ Q̂k, (3.12)

where

Q̂−1 =
(

0 c∗
0 0

)
, Q̂0 =

(
0 ρ

ρ∗ 0

)
, Q̂1 =

(
0 0
c 0

)
. (3.13)

Alternatively, we may express the 2n × 2n Hermitian matrix Fn,t,c,d(θ) as follows:

Fn,t,c,d(θ) =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

0 ρ c∗ε∗
ρ∗ 0 c

c∗ 0 ρ 0
ρ∗ 0 c

c∗ • •
• • •

• • •
0 • 0 c

c∗ 0 ρ

cε ρ∗ 0

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

, (3.14)

for n ≥ 2 and

Fn,t,c,d(θ) =
(

0 ρ + c∗ε∗
ρ∗ + cε 0

)
, (3.15)

for n = 1.
Bearing in mind the fact that |ε| = 1, we easily verify that Fn,t,c,d(θ) square has

the following form:

Fn,t,c,d(θ)2 = (|c|2 + |ρ|2)P̂0
2n + cρ P̂2

2n + c∗ρ∗ P̂−2
2n . (3.16)

Note that the eigenvalues μ j of P̂2n are given by

μ j = exp

(
i

(
tθ + 2π j

2n

))
, (3.17)

j ∈ {1, . . ., 2n} and that the eigenvalues ξ j of Fn,t,c,d(θ)2 are given by

ξ j = |c|2 + |ρ|2 + cρμ2
j + c∗ρ∗μ−2

j , (3.18)
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j ∈ {1, . . ., 2n}. Since μ j = μn+ j for all j ∈ {1, . . ., n}, we have

ξ j = ξn+ j (3.19)

for all j ∈ {1, . . ., n}.
Let ω = −1 and let

τ := diag(ω1, ω2, . . . , ω2n), (3.20)

then we have
(
τ−1 Fn,t,c,d(θ)τ

)

i j
= ω−i+ j

(
Fn,t,c,d(θ)

)

i j

= (−1)−i+ j
(

Fn,t,c,d(θ)
)

i j
. (3.21)

By noticing the fact that (Fn,t,c,d(θ))i j vanishes whenever −i + j is an even number,
we see that

(
τ−1 Fn,t,c,d(θ)τ

)

i j
= (−1)

(
Fn,t,c,d(θ)

)

i j
, (3.22)

for all i, j ∈ {1, 2, . . . , 2n}, thus we have

τ−1 Fn,t,c,d(θ)τ = (−1) Fn,t,c,d(θ). (3.23)

Before applying Theorem A, it is convenient at this moment to introduce

Lemma 1 Let ξ1, ξ2, . . ., ξn be nonnegative real numbers. Let F be a 2n × 2n Her-
mitian matrix, let σ(F) denote the spectrum of F (the set of all eigenvalues of F).
Let m(λ) denote the algebraic multiplicity of λ ∈ σ(F). Suppose that the following
conditions (i) and (ii) hold:

(i) For each λ ∈ σ(F),

− λ ∈ σ(F), (3.24)

m(−λ) = m(λ). (3.25)

(ii) There exists a 2n × 2n unitary matrix V such that

V −1 F2V = diag(ξ1, ξ2, . . . , ξn, ξ1, ξ2, . . . , ξn). (3.26)

Then, we have
(iii) There exists a 2n × 2n unitary matrix W such that

W −1 FW = diag
(√
ξ1,

√
ξ2, . . . ,

√
ξn,−

√
ξ1,−

√
ξ2, . . . ,−

√
ξn

)
. (3.27)
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Proof of Lemma 1 Assume (i) and (ii). Let λ j (F) denote the j th eigenvalue of F
counted with multiplicity, arranged in the increasing order, where j ∈ {1, . . ., n}.

Then, (i) implies that

λ1(F) ≤ λ2(F) ≤ · · · ≤ λ2n(F), (3.28)

and that

− λ j (F) = λ2n+1− j (F) (3.29)

for all j ∈ {1, . . ., n}. Thus, there exist n nonnegative real numbers

0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εn (3.30)

and a 2n × 2n unitary matrix U such that

U−1 FU = diag(ε1, ε2, . . . , εn,−ε1,−ε2, . . . ,−εn). (3.31)

Squaring both sides, we have

U−1 F2U = diag(ε2
1, ε

2
2, . . . , ε

2
n, ε

2
1, ε

2
2, . . . , ε

2
n). (3.32)

Now compare (3.26) with (3.32) and note that ξ1, ξ2, . . ., ξn, ξ1, ξ2, . . ., ξn and
ε2

1, ε
2
2, . . ., ε

2
n, ε

2
1, ε

2
2, . . ., ε

2
n are both 2n eigenvalues of F2. From this fact we easily

infer that there is a bijection (permutation) s : {1, . . ., n} → {1, . . ., n} and a 2n × 2n
permutation (unitary) matrix P such that

diag
(
ε2

1, ε
2
2, . . . , ε

2
n, ε

2
1, ε

2
2, . . . , ε

2
n

)

= diag
(
ξs(1), ξs(2), . . . , ξs(n), ξs(1), ξs(2), . . . , ξs(n)

)

= Pdiag (ξ1, ξ2, . . . , ξn, ξ1, ξ2, . . . , ξn) P−1. (3.33)

(Note: Let α1 < α2 < · · · < αr be r nonnegative real numbers such that σ(F2) =
{α1, α2, . . ., αr }, where r ≤ n. To construct a permutation s on {1, . . ., n} that satisfies
the first equality of (3.33), select a permutation s so that ξs(1) ≤ ξs(2) ≤ · · · ≤ ξs(n).
Let E := (ε2

1, ε
2
2, . . ., ε

2
n) and let X := (ξs(1), ξs(2), . . ., ξs(n)) and express E and X in

terms of α j :

E = (α1, . . . , α1, α2, . . . , α2, . . . , αr , . . . αr ), (3.34)

where each α j is repeated k j times,

X = (α1, . . . , α1, α2, . . . , α2, . . . , αr , . . . αr ), (3.35)
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where each α j is repeated l j times. By the fact that ξ1, ξ2, . . ., ξn, ξ1, ξ2, . . ., ξn and
ε2

1, ε
2
2, . . ., ε

2
n, ε

2
1, ε

2
2, . . ., ε

2
n are both 2n eigenvalues of F2, we see that

m(α j ) = 2k j = 2l j (3.36)

for all j ∈ {1, . . ., r}. Thus, we have

E = X, (3.37)

constructing a permutation s that satisfies the first equality of (3.33).)
On the other hand, since ε j are all nonnegative, we see that

ε j = √
ξs( j) (3.38)

for all j ∈ {1, . . ., n}. Thus, making the substitution (3.38) in (3.31), we obtain:

U−1 FU = diag
(√
ξs(1),

√
ξs(2), . . . ,

√
ξs(n),−

√
ξs(1),−

√
ξs(2), . . . ,−

√
ξs(n)

)

= Pdiag
(√
ξ1,

√
ξ2, . . . ,

√
ξn,−

√
ξ1,−

√
ξ2, . . . ,−

√
ξn

)
P−1. (3.39)

Therefore, we see that

P−1U−1 FU P = diag
(√
ξ1,

√
ξ2, . . . ,

√
ξn,−

√
ξ1,−

√
ξ2, . . . ,−

√
ξn

)
. (3.40)

By setting

W = U P, (3.41)

since W −1 = P−1U−1, we get (iii). 
�
Now apply Theorem A and notice that the spectrum of Fn,t,c,d(θ) has the (−1)-

rotational symmetry counting the multiplicity. Recall Eq. (3.19) and compare it with
condition (ii) of Lemma 1.

By Lemma 1, we see that the eigenvalues of Fn,t,c,d (θ ) are given by

±
√

|c|2 + |ρ|2 + cρμ2
j + c∗ρ∗μ−2

j

= ±
√

|c|2 + |ρ|2 + 2Re[cρμ2
j ]

= ±
√

|c|2 + |ρ|2 + 2Re

(
cρ exp

(
i

(
tθ + 2π j

n

)))
, (3.42)

j ∈ {1, . . ., n}. From this the conclusion follows. 
�
Now all of our Problems (A.I)–(A.IV) have been affirmatively solved. Thus, we

have established theoretical linkages between the present series of articles and the
following:
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(i) Part I of the structural analysis series [17] and related investigations (cf. [14]
and references therein),

(ii) Theorm I in ref. [4] entitled ‘Fundamental notions for the second generation
Fukui project and a prototypal problem of the normed repeat space and its super
spaces’, so that asymptotic analysis of sequences of CNTs is possible by using
Theorem I in [4] and related notions of Banach algebras and C*-algebras.

(iii) Challenging Parallel Problems II, III, and IV [4], which are directly related to
the problems of ‘spectral symmetry’.

4 Estimates of the norms of matrix sequences representing CNTs
and Challenging Problem A#

(I) The sequence {Ma,−b,c,d
N }N∈Z+ is an element of XB(2a, 1, 2).

(II) The sequence {Fn,−b,c,d(θ)}n∈Z+ is an element of XB(2, 1, 2).

The above propositions (I) and (II) can be directly established by proving the following
and similar estimates:

sup
N≥1

∥∥∥Ma,−b,c,d
N

∥∥∥
2

≤ |c| + |d| + 1 < ∞, (4.1)

sup
n≥1

∥∥∥Fn,−b,c,d(θ)

∥∥∥
2

≤ |c| + |d| + 1 < ∞. (4.2)

From the explicitly obtained eigenvalues (3.5), one can get the following estimate of
the norm of Hermitian matrix Fn,−b,c,d(θ):

∥∥∥Fn,−b,c,d(θ)

∥∥∥
2

= max
j

∣∣∣λ j (F
n,−b,c,d(θ)2)

∣∣∣
1
2

= max
j

∣∣∣|c|2 + |ρ|2 + cρμ2
j + c∗ρ∗μ−2

j

∣∣∣
1
2

= max
j

∣∣∣∣|c|2 +
∣∣∣1 + d∗e−iθ

∣∣∣
2 + c(1 + d∗e−iθ )μ2

j + c∗(1 + deiθ )μ−2
j

∣∣∣∣

1
2

≤
(
|c|2 + (1 + |d|)2 + 2 |c| (1 + |d|)

) 1
2

= |c| + |d| + 1. (4.3)

For carbon nanotubes, setting c = d = 1, we see that the above upper bound agrees
with the maximal vertex degree in the nanotube graphs, which is 3. See also the Matrix
Art pictures of CNT energy band curves given in Figs. 3 and 4 in Sect. 5 and note that
|Energy| ≤ 3 in the pictures.

Now we are ready to formulate our
Challenging Problem A# Is it possible to get the above and similar estimates of norms
without using the explicitly obtained eigenvalues of Fn,−b,c,d(θ)?

This problem complements our Problem A formulated in Sect. 2. The study of
this and associated challenging problems enriches the interdisciplinary investigation
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Fig. 1 Matrix Art picture called ‘Carpet 1’

Fig. 2 Matrix Art picture called ‘Bamboos’

related to carbon nanotubes and other molecular networks. The affirmative solutions
for the above Challenging Problem A# and related problems will be published else-
where.

5 Matrix Art of CNT energy band curves and energy surfaces

In a recent article [6] by the first author (S.A.), various pictures of Matrix Art
of ‘Magic Mountains’ having inwardly repeating fractal structures were provided.
Cf. article [6] for our motivation of investigating inwardly repeating fractal structures
(cf. also [23,29,30] and references therein) for the study of molecular networks hav-
ing many identical moieties. The reader is referred to [4,6] and references therein for
the origin of Matrix Art. The Matrix Art pictures in Figs. 1 and 2 given above are
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Fig. 3 Matrix Art picture of CNT energy band curves called ‘Cradles’

respectively called ‘Carpet 1’ and ‘Bamboos’. These were created in the Matrix Art
Challenge Seminar in Tsuyama National College of Technology by using MagicMt0
defined in [6].

In what follows, we present pictures of Matrix Art of CNT energy band curves and
CNT energy band surfaces, which were created in the Matrix Art Challenge Seminar
in Tsuyama National College of Technology. We remark that symmetry found in those
pictures in Figs. 3, 4, 5, 6, 7 and 8 played a heuristic role motivating us to provide an
affirmative solution of our Problem (A.IV) formulated in Sect. 2 of the present article.

The reader is also invited to refer to Prof. H. Hironaka’s public speech entitled
‘Mathematics and the Sciences’ [31] for an instructive account of the notion of self-
similarity, fractal geometry, and of mathematical sciences.

The reader is also invited to refer to Prof. R. Hoffmann’s public speech entitled ‘One
Culture’ [32]. We would like to record here the fact that two refs. [31,32] formed an
important source of inspiration for the Fukui Project, which is devoted to cultivating
a new interdisciplinary region in science, often utilizing dialectic interplay between
a complementary pair of opposite notions and ideas. These two refs. [31,32] are also
playing a role of a guideline for the Matrix Art Program of what is called the Niagara
Project (cf. [4,6,11] for details), which is a special new part of the on-going interna-
tional, interdisciplinary, and inter-generational Second Generation Fukui Project.

In ref. [11], entitled ‘Proof of the Fukui conjecture via resolution of singularities
and related methods. V’, theory of analytic (highly smooth) curves and resolution of
singularities has been applied to prove the Fukui conjecture originating in chemistry.
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Fig. 4 Matrix Art picture of CNT energy band curves called ‘Baskets’

Fig. 5 Matrix Art picture of CNT energy band surface called ‘Face 1’
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Fig. 6 Matrix Art picture of CNT energy band surfaces called ‘Face 2’

Fig. 7 Matrix Art picture of CNT energy band surfaces called ‘Cat’s Cradle 1’
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Fig. 8 Matrix Art picture of CNT energy band surfaces called ‘Cat’s Cradle 2’

We remark that

1. the present ‘CNT Series’ of articles is closely associated with the above-mentioned
‘Resolution of Singularities Series I–V’ published in the JOMC (cf. ref [11] and
references therein for details);

2. the investigations of highly smooth functions and of highly irregular functions are
complementary in the repeat space theory (RST), which is the central unifying
theory in the Second Generation Fukui Project.
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